


activating hERG relative, bovine Eag, possesses the homol-
ogous drug-binding residues in its vestibule but is inhibited
by hERG blockers only when inactivation is introduced by
mutations at a separate site in the P-region.49 Our studies
support the model that inactivation promotes hERG channel
block, demonstrating that allosteric changes caused by struc-
tural domains far from the drug-binding site, such as the N
terminus, may play an important role.

The differences in hERG 1a and 1a/1b gating kinetics
allow us to speculate about the corresponding conformational
changes. The similar fold increases in activation and deacti-
vation rates for hERG 1a/1b compared to 1a currents are
consistent with the absence of a shift in the V1/2 of the
activation curve and suggest that heteromers encounter a
lower energy barrier in the transition between the closed and
open states. Because the subunits are otherwise identical, this
lower energy barrier is attributable to a mechanism involving
the N termini of the hERG 1a and 1b channels or a simple
reduction in the number of the longer hERG 1a N termini in
the heteromer. The N terminus of hERG 1a interacts with or
near the S4-S5 linker,13,15 which couples movement of the
voltage sensor with the opening and closing of the activation
gate.54,55 Perhaps only 1a N termini interact with the S4-S5
linker, creating a load or stiffness against opening and

closing. Although the stoichiometry of hERG 1a/1b hetero-
mers is not known, the heteromer provides fewer 1a N
termini, and thus the channel may open and close with less
resistance. This model is consistent with the structure of the
Kv1.2 S4-S5 linkers,56 which collectively encircle the resi-
dues forming the activation gate within the S6 tetrad.57,58

These are the first studies of hERG 1a/1b channels in
mammalian cells recorded at near-physiological tempera-

Figure 9. Effect of E-4031 on the action potential. The left col-
umn shows action potentials from the Fink modified35 ten Tuss-
cher action potential model36 in which hERG 1a/1b (blue) and
hERG 1a (red) were substituted for the native IKr. Panels A and
B have the same time scales. As [E-4031] increases (0, 5, and
10 nmol/L for A, B, and C, respectively), APD90 increases and
IhERG decreases for both hERG 1a/1b and 1a. 
APD90 (the differ-
ence in APD90 between hERG 1a/1b and hERG 1a) also
increases with [E-4031] ([E-4031]�0 nmol/L, 
APD90�38 ms;
[E-4031]�5 nmol/L, 
APD90�168 ms; [E-4031]�10 nmol/L,

APD90�728 ms). In all cases, APD90 is longer and peak IhERG is
smaller for hERG 1a. For control and for [E-4031]�5 nmol/L,
peak IhERG occurs later for hERG 1a. For hERG 1a at [E-4031]�10
nmol/L (bottom row, red), repolarization fails to occur within the
1-second cycle length on odd-numbered beats. To mark the take-
off potential of the odd beat for hERG 1a, we placed a red arrow.
The alternating pattern for hERG 1a is a consequence of sustained
depolarization curtailing deactivation at the end of even beats.

Figure 10. Molecular characterization of mutation hERG 1b
23C�T encoding A8V in patient DNA. A, Schematic of hERG 1b
N-terminal sequence encompassing A8V mutation. B, Denatur-
ing high-performance liquid chromatography (DHPLC) chro-
matogram revealing a wild-type (blue peak) and an abnormal
(red peak) elution profile. C, Corresponding DNA sequencing
chromatograms revealing the heterozygote 23C�T missense
mutation encoding A8V identified in HERG exon 1b.
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tures. Previous studies have established differences in tem-
perature sensitivities of hERG 1a gating parameters, such that
the overall current profile obtained at lower temperatures
differs quite markedly from that recorded at higher tempera-
tures.10,59 Such temperature differences are consistent with
the much greater reductions in rectification we observe here
compared with our previous observations of hERG 1a/1b
currents in Xenopus oocytes17 or those by Bauer and col-
leagues in clonal pituitary cells,60 both measured at room
temperature. In a recent study of hERG 1a and 1b expressed
in CHO cells, gating kinetics measured at room temperature
show up to 6-fold increases in deactivation time constants for
hERG 1a versus 1a/1b currents.61 Other gating parameters
exhibited relatively minor differences, such as a roughly 50%
faster apparent activation rate in hERG 1a/1b but only minor
differences in inactivation or recovery from inactivation.
Thus, it is critical to consider temperature when extrapolating
results of channel function in heterologous expression sys-
tems to physiological systems.

How the A8V mutation reduces hERG 1b protein levels is
not known. Whether the 1bA8V protein levels are reduced
because they oligomerize inefficiently or are inherently un-
stable, or because the nucleotide mutation leads to transcrip-
tional perturbation or mRNA instability, will require further

study to understand. Despite the low levels of A8V protein on
Western blots, the mutant subunits do associate with hERG
1a subunits and alter their expression. Because the current
properties of hERG 1a/A8V-1b channels were highly vari-
able, we were unable within the scope of this study to
precisely characterize the biophysical mutant phenotype. We
are currently testing the hypothesis that the mutation reduces
overall current levels by associating with hERG 1a subunits
and rendering the complex unstable.

There are several unanswered questions regarding the
relative disposition of hERG 1a and 1b in native tissues.
Although in our previous Western blot analysis we observed
robust and roughly equal expression of hERG 1a and 1b
subunits in human left ventricle, our more extensive experi-
ence in other species shows there is significant variability, the
determinants of which we do not currently understand.20 The
stoichiometry is unknown in tissue, although a recent meeting
report indicates that assembly in heterologous systems is
random,62 raising the intriguing possibility that stoichiometry
may be flexible and established by independent gene expres-
sion of the hERG 1a and 1b alternate transcripts. Such
regulation may lead to differences in regional, transmural,
sex-specific, or developmental expression of the hERG 1b
subunit, and thus its importance may be context-specific.

Figure 11. Loss of hERG 1b protein attributed to A8V mutation in HEK-293 cells. A, Western blot analysis of HEK-293 cell lysates
probed with a C-terminal pan-hERG antibody (�-CT).20 Protein disulfide isomerase (PDI), an endoplasmic reticulum–resident protein,
was used as a loading control (�-PDI). Lane 1, hERG 1b; lane 2, hERG 1a; lane 3, hERG 1b�hERG 1a; lane 4, mutant hERG 1bA8V;
lane 5, hERG 1a; lane 6, mutant hERG 1bA8V�hERG 1a; lane 7, hERG 1b. B, Current traces from hERG 1a stably expressed in HEK-
293 cells recorded at room temperature, evoked from a holding potential of �80 mV and stepped from �100 to �60 mV, followed by a
step to �105 mV. C, Currents as in B but from stable 1a cells transiently transfected with hERG 1b. D, Currents as in B but from stable
1a cells transiently transfected with A8V-1b.
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Our findings have implications for both acquired and
inherited LQTS. Until now, the primary platform for safety
testing drugs in development to prevent acquired LQTS has
been HEK-293 cell lines stably expressing solely hERG 1a
homomeric channels.10,63 Given that different drugs exhibit
different pore-binding mechanisms,64 it will be important to
screen a variety of drugs with known torsadogenic potential
in cells expressing hERG 1a/1b heteromeric channels that
may more closely approximate the composition and func-
tional properties of those underlying native IKr. Our findings
also suggest that, in addition to searching for disease muta-
tions in the hERG 1b-specific exon, evaluating the cellular
phenotypes of established LQT2-susceptibility mutations and
KCNH2 polymorphisms at physiological temperatures in the
context of a hERG 1a/1b heteromeric channel rather than the
hERG 1a homomeric channel may reveal novel molecular
mechanisms for both congenital and drug-induced LQTS.
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Detailed Computational Modeling Methods 

Two Markov models, one representing hERG 1a/1b and another representing hERG 1a, 

were constructed using a previous model for IKr as a template
1
.  Simulations for model validation 

reproduced the experimental protocols, including temperature (exception: the E-4031 dose 

response curve was measured at room temperature, but was simulated without adjusting the 

models which were validated at near-physiological temperature).  Matlab and the ode23s 

integrator (absolute and relative error tolerance set to 10
-6

) were used to compute these 

simulations using a Windows XP desktop computer with a Pentium 4 processor.  Parameters 

were chosen using the interior-reflective Newton method
2
 and a least squares objective function 

to match action potential clamp data for hERG 1a/1b.  This was followed by manual refinements 

to improve correspondence of the models with all of the other data for hERG 1a/1b and to 

determine the hERG 1a parameters.  Equations for the hERG models are given in this online 

supplement.  The hERG models were incorporated into the Fink modified
3
 ten Tusscher action 

potential model
4
 in exchange for the native IKr.  Action potential simulations were computed 

using Rush and Larson integration
5
 for the cell model (fixed time step = 0.01 ms) and the 

CVODE
6
 integrator for the hERG models (several time steps per 0.01 ms).  They were 

implemented in C++ and run on Linux cluster nodes.  All action potential results show the 1000
th

 

beat at 1 Hz pacing. 



 

Supplement Figure 1.  Comparison of hERG 1a/1b (blue) and hERG 1a (red) in the action 

potential without E-4031.  Shown are results from the 1000
th

 paced beat at 1 Hz for the Fink 

modified
3
 ten Tusscher action potential model

4
.  A&B) Action potentials.  C) hERG 1a/1b (blue) 

hERG 1a/1b (blue) and hERG 1a (solid red for normal mode, and dashed red for N-mode).  E-

4031-blocked state occupancies are zero for hERG 1a/1b and for hERG 1a (not shown) since the 

drug is not applied in this simulation.  APD90 (measure of the time elapsed between activation 

and 90% repolarization) for hERG 1a is 376 ms.  This is 38 ms longer than APD90 for hERG 

1a/1b.  The hERG 1a versus hERG 1a/1b prolongation is 30 ms when our models are 

incorporated into the Priebe and Beuckelmann action potential model
7
 (not shown).  

Prolongation occurs because N-mode occupancy results in slower activation, and slower closed-

state inactivation.  N-mode activation is movement from cn3, to cn2, to cn1.  This movement is 

slow compared with c3, to c2, to c1 movement in the normal mode because N-mode 
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activation/deactivation rates are reduced to 0.35 times the normal mode values.  A comparison of 

early growth and decay for solid versus dashed red lines in panels D-F illustrates this.  Closed-

state inactivation in the N-mode, which is movement from cn1 to in, is slower than the 

corresponding normal mode movement from c1 to i.  This is because the N-mode transition rate 

n2 is reduced to 0.35 times the corresponding normal mode transition rate 2.  Thus, recovery 

current through the open state arrives after a delay in N-mode compared to normal mode.  Panels 

F and H illustrate.  In panel F, early cn1 decay is slower than c1 decay.  In panel H, decay from 

normal mode state i begins at t = 60 ms while N-mode decay from state in does not begin until 

108 ms later, when cn1 finally finishes emptying into in. 

 

 

 

 

 

 

 

 

 

 

Supplement Figure 2.  Pause-induced early afterdepolarizations for hERG 1a (red), but not for 

hERG 1a/1b (blue) in the presence of E-4031.   To test for susceptibility to early 

afterdepolarizations we used the Luo-Rudy midmyocardial ventricular action potential model
8
.  

Unlike the human-based Fink modified ten Tusscher model and the Priebe and Beuckelmann 
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model used elsewhere in this study, the guinea pig-based Luo-Rudy model has features that 

enable the reliable demonstration of early afterdepolarizations under appropriate conditions.
9, 10

   

This figure shows the Luo-Rudy model paced for 40 beats at a cycle length of 500 ms with 

hERG 1a or hERG 1a/1b in place of the native IKr.  Following these 40 beats (of which the last 

five are shown), a 1500 ms pause preceded an additional single paced beat.  [E-4031] was set to 

55 nM, the minimum concentration needed to cause an early afterdepolarization.  The formation 

of early afterdepolarizations for hERG 1a but not for hERG 1a/1b demonstrates a connection 

between the altered channel kinetics of hERG 1a and the clinical appearance of torsades de 

pointes arrhythmia in the presence of hERG blocking drugs following a pause
11

.    
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GhERG = 0.0048 mS, Fink modified3, ten Tusscher4  

GhERG = 0.015 mS, Priebe and Buekelmann7 

GhERG = 0.02614 mS, Luo and Rudy8  
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20 coupled ordinary differential equations 
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Calculation of Current 
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